×

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются.

Рекомендуем установить один из следующих браузеров: Firefox, Opera или Chrome.

Контактная информация

+7-863-218-40-00 доб.200-80
ivdon3@bk.ru

Эволюция и современное состояние систем ответов на вопросы: технологии распознавания намерений и именованных сущностей с использованием модели BERT

Аннотация

Аксенов К.А., Сунь Л.

Дата поступления статьи: 19.05.2024

В данной статье подробно исследуется технологическая эволюция и текущее состояние вопросно-ответных систем (Q&A). На примере задачи обслуживания клиентов авиакомпании разработана модель на основе BERT-модели, способная распознавать намерения пользователей и извлекать именованные сущности. В работе предоставлено подробное описание подготовки набора данных, методов анализа данных и методов исследования данных в рамках проекта. Представлено описание модели и настроек параметров во время процесса настройки модели и процесса ее обучения. Разработанная в этом проекте модель названа RNEEMAviCS-BERT, которая достигла точности распознавания намерений 98,2% и точности распознавания именованных сущностей 83%. Мы создали модуль семантического анализа для системы вопросов и ответов. Следующим этапом нашей работы будет интеграция набора данных для завершения компонентов “запрос-ответ” и “генерация ответа” системы вопросов и ответов.

Ключевые слова: вопросно-ответные системы, ChatGPT, BERT, машинное обучение, нейронные сети, предобученные модели, распознавание намерений, распознавание именованных сущностей, анализ данных, обучение модели

2.3.1 - Системный анализ, управление и обработка информации

2.3.4 - Управление в организационных системах

.