×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Analytical problem solution of synthesis of a nonlinear stabilization system based on a mathematical CGA model

Abstract

Analytical problem solution of synthesis of a nonlinear stabilization system based on a mathematical CGA model

Gaiduk A.R., Neydorf R.A., Kudinov N.V., Polyakh V.V.

Incoming article date: 19.11.2019

Mathematical models with analytical properties are needed to create modern stabilization systems for various objects and technical systems. This is due to the fact that most of the existing methods for the synthesis of automatic systems are based on mathematical transformations of models of control objects. However, for complex objects and systems, these models are obtained experimentally. Moreover, the experimental data are approximated by various well-known methods. If the dependences are essentially nonlinear in nature, they are approximated by sections. Such a fragmented model as a whole is not analytical, which excludes the use of many well-known methods for the synthesis of nonlinear stabilization systems. In these cases, it is advisable to use the new Cut-Glue approximation method developed at DSTU, which allows one to obtain an analytical model of an object from piecewise approximations. This analytical model allows you to apply the analytical method for the design of quasilinear control systems for nonlinear objects. In this paper the propoused approach is illustrated by example of the design of a nonlinear system for stabilizing the flight altitude of an airship.

Keywords: stabilization system, analytical synthesis, nonlinear control object, mathematical model, quasilinear form, experimental data, fragmentary model, multiplicatively additive approximation