×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Effect of photon drag of electrons in a semiconductor quantum wire with hydrogen-like impurity centers and Kane dispersion law

Abstract

Effect of photon drag of electrons in a semiconductor quantum wire with hydrogen-like impurity centers and Kane dispersion law

Kalinin E.N., Kalinina A.V.

Incoming article date: 07.10.2021

The article discusses the effect of photon drag (EPI) of electrons in a semiconductor quantum wire (QW) with hydrogen-like impurity centers and Kane's dispersion law, located in a longitudinal magnetic field. An analytical expression for the drag current density is obtained in the effective mass approximation, and its spectral dependence is investigated for various values ​​of the magnetic field B and the parameters of the QW upon scattering by a system of potentials of short-range impurities. It was assumed that the QW has the shape of a circular cylinder, on the axis of which hydrogen-like impurity centers are localized. It is shown that, in the one-band approximation, taking into account the nonparabolicity of the dispersion law leads to significant dynamics of the threshold of the spectral curve. The spectral dependence is characterized by a pronounced Zeeman effect. The possibility of using an ESP for the development of photodetectors of optical radiation with a sensitivity controlled in a magnetic field is discussed.

Keywords: electron dragging by photons, quantum wire, hydrogen-like impurity centers, dragging current, dipole approximation