×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Application of cerium oxide for the production of ceramics with increased thermal and chemical resistance

Abstract

Application of cerium oxide for the production of ceramics with increased thermal and chemical resistance

Filippova L.S., Akimova A.S., Pikalov E.S.

Incoming article date: 17.03.2023

The paper presents the results of a study of the effect of cerium oxide on the sintering process and the basic physico-chemical properties of ceramics based on low-plastic clay with the addition of boric acid. The developed ceramics were obtained by semi-dry pressing at a maximum firing temperature of 1050 ° C. The combined introduction of cerium oxide with boric acid promotes liquid-phase sintering, self-glazing of the ceramic surface and effective filling of pores and voids in it with the vitreous phase. At the same time, cerium oxide increases the refractoriness and chemical resistance of the vitreous phase and equalizes the coefficients of thermal expansion between the crystalline and amorphous phases in the composition of ceramics. The amount of cerium oxide has been determined, which makes it possible to optimally increase the heat resistance, chemical resistance and strength of ceramics. The practical application of the developed composition of the charge makes it possible to use raw materials of low plasticity in the production of high-quality ceramics for lining apparatuses and equipment, lining of industrial buildings and structures, etc. products experiencing mechanical stress with repeated and abrupt temperature changes, as well as in contact with aggressive media.

Keywords: ceramics, heat resistance, chemical resistance, self-glazing, low-plastic clay, cerium oxide, boric acid