×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • The study of products obtained by 3D printing

    The factors affecting the strength of the interlayer bond of 3D concrete, as well as factors affecting the ability of the printer nozzle to produce a controlled concrete thread of a particular composition, which is being investigated in the process of 3D printing technology, the main characteristics of the suitability of compositions for printing on a 3D printer, requirements for rheology, hydration and strength in an uncured form, are considered 3D concrete, the main mechanical test methods for determining the adhesion strength in concrete printed on a 3D printer. The possible shapes and nominal sizes of the samples used in the methods for determining the strength of concrete are given.

    Keywords: 3D concrete, anisotropy of mechanical properties, extrusion, cold connection, interfacial coupling, deflocation, thixotropy, initial static viscosity, curing, three-point bending

  • Dispersion-filled composite on carbon black

    The article shows the possibility of producing a composite using carbon black as a filler. Trivalent chromium oxide was chosen not only as a pigment component, but also as a light stabilizer. The results obtained allow us to say that the dispersed composition is efficient. Compositions based on carbon black and containing trivalent chromium oxide in an amount of 1% exhibit electrically conductive properties.

    Keywords: pyrolysis carbon, chemical composition, structural and morphological characteristics, elemental composition, energy dispersive spectrum, micrograph, epoxy binder, polyethylene polyamine, trivalent chromium oxide, thermal conductivity, electrical conductiv

  • Numerical Simulation of Wood Beams Strengthened of Composite Materials Based on Carbon Fiber

    The results of numerical modeling of wooden beams strengthened of composite materials based on carbon fiber are considered. Modeling of beams strengthened of composite material was carried out in the ANSYS software using deformation diagrams. The reliability of the modeling methodology was assessed by comparing the results of a numerical study with the results of a physical experiment obtained during testing of models of wooden beams strengthened of composite materials based on carbon fiber.

    Keywords: carbon fiber, carbon composite materials, strengthening of wooden structures, external reinforcement of wooden beams

  • Experimental study of the stress-strain state of radial beam domes

    The article considers an experimental study of the stress-strain state of radial beam domes. The maximum stress values are fixed in stretched flexible elements with a peak value of 363.6 MPa. With the calculated resistance of the wire material Bp-I Rs = 410 MPa, there is a 12% load-bearing capacity margin. Note the high level of stresses in other flexible elements with values in the range from 141.4 to 274.72 MPa.

    Keywords: radial beam dome, experimental studies, loading, strain gages, deformation